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    Abstract- This paper presents the use of neural network 
modeling to predict electron concentration in the altitudes from 
140 to 660 km as well as total electron content (TEC) to reduce 
GPS signal propagation errors.  In training the neural network 
we have used incoherent scatter radar (ISR) data from the 
Arecibo Observatory, solar flux data from National Oceanic and 
Atmospheric Administration (NOAA), and simulated data from 
the International Reference Ionosphere (IRI).  The ISR data 
covers almost two solar cycles, which allows the network to make 
accurate predictions based on local time, seasonal, and solar 
cycle variations above Arecibo, Puerto Rico (18.21N, 66.45W). 
We demonstrate that neural network models are not only 
accurate predictors of dynamic systems, but also perform better 
than the commonly referenced IRI model.   
 
 

I.  INTRODUCTION 
 

Ionosphere propagation delay is the largest error source for 
single frequency GPS. At L1 frequency, the range error 
caused by one total electron content (TEC) unit (1x106/cm2) is 
about 0.163 m [1]. With tens of TEC units along GPS signal 
path through the ionosphere, ionosphere delays can account 
for position errors in the order of tens of meters.  A common 
approach to reduce ionosphere propagation delay is to use 
ionosphere models to estimate the TEC.  Although both 
empirical and first-principle models are now available to 
estimate the TEC, large errors often exist in these models 
because of the ionosphere variability.  In order to reduce the 
positioning error of single frequency GPS receivers, it is 
imperative to have better ionosphere models.  
 The main objective of this paper is to report an empirical 
ionosphere model obtained using neural networks.  The most 
common use of neural network modeling is in short-term 
ionospheric prediction, as in [2][3][4] [5].  Typical forecasting 
was accurate up to 24 hours in advance using a feed forward, 
multilayer neural network.  These previous studies showed 
that neural network models are capable of making short-term 
predictions under normal atmospheric conditions.  Ionosphere 
prediction under disturbed conditions still presents a 
challenge.  The main focus of this paper is to report a model 
that is capable of long-term predictions under geomagnetic 
quiet conditions.  Although modeling for long term prediction 
has been attempted [6], less than a solar cycle data were 

typically used in training, which resulted in potentially large 
errors.    

To make the long term forecast of an empirical model 
accurate, it is essential to use a training data covering at least 
one full solar cycle.  In this study, data collected by the 
incoherent scatter radar (ISR) at Arecibo, Puerto Rico during 
the period of 1986 to 2000 were used for this purpose.  In the 
following sections, we will describe the neural network model 
developed and the data preparation for training the neutral 
work.  A comparison between the neural network predictions 
with the actual data and the International Reference 
Ionosphere (IRI) model will be presented, followed by 
discussions and conclusions. 

 
 

II. THE MODEL 
  

A number of neural network architectures can be found in 
the literature [7].  A feed forward neural network with back 
propagation was selected for this study based on previous 
modeling work experience and on careful examinations of 
parameters associated with the training data and expected 
outputs.  

A four layer neural network is used in the model.  The first 
layer contained four network inputs: local time t, solar 
irradiance flux Φ10.7, and two inputs sin(2πdn/365), 
cos(2πdn/365) which are related to day number dn.  The last 
two inputs are used to enforce the periodic nature of seasonal 
variation.   

Although we initially trained for the geomagnetic index, 
Kp, as well, this index was taken out in the final model, which 
is further discussed in Section V. The second and third layers, 
or hidden layers, are the most important layers of the network.  
These layers determine how precisely the network will train 
and how much it is capable of learning. 

The degree of complexity and consistency of the training 
data are critical factors in selecting network architecture 
design.  In general, more complex data sets require more 
complicated networks for accurate simulation.  Overly 
complicated network architectures will have adverse effects 
on model performance. For example, too many neurons in the 
hidden layers will result in extended training time and lead to 
overtraining which could introduce too much simulation 
variability and inconsistent results. 
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We chose to use thirteen hidden neurons in each of the 
hidden layers and fifteen neurons in the final layer as an 
optimum compromise between network complexity and 
performance.  The fifteen neurons in the final layer correspond 
with the ISR measurements taken at fifteen different altitudes, 
ranging from 144km to 664km with 37km altitude increments.  
Tables 1 and 2 contain more details of the network 
architecture and training parameters. 
 
 

Table 1 
NETWORK  TRAINING  PARAMETERS 

 
Network Architecture feed forward 

Performance Function mean square error 

Training Function Levenberg-Marquardt backpropagation 

Epochs 200 

Momentum Rate 0.001 
Goal 0.1 

 
 

Table 2 
NETWORK  ARCHITECTURE  SPECIFICS 

 

Layers Number of 
Neurons Transfer Function 

1 4 hyperbolic tangent 
2 13 hyperbolic tangent 

3 13 hyperbolic tangent 
4 15 linear 

 
 

III.  DATA PREPARATION 
 

The electron density data were taken using the incoherent 
scatter radar (ISR) located near Arecibo, Puerto Rico.  The 
ISR data set used in the study contains about 210 days of 
electron concentration distributions from years 1986 to 2000.  
The altitude covers the majority of the ionosphere F-region 
from 144 km to 660 km with a height resolution of about 37 
km.  Readers are referred to [8] and [9] for a description of the 
incoherent scatter radar principles and the nature of the data 
taken by ISRs.  

In training our neural network, we also used the 10.7 cm 
solar irradiance index Φ10.7 and the geomagnetic index Kp.  
Both indices were obtained from the NOAA website: 
http://www.ngdc.noaa.gov.  The outputs of our neural network 
are compared against data from the International Reference 
Ionosphere (IRI).  The IRI data was obtained from the NASA 
Goddard Space Flight Center website: 
http://nssdc.gsfc.nasa.gov/space/model/models/iri.html. A 
description of the IRI model can be found at the website and 
in reference [10]. 

Prior to training, the ISR data required a minimal amount 
of filtering and signal processing.  Outliers and bad data points 
were eliminated and replaced by artificial data points based on 
linear interpolation.  In order to evaluate the validity of the 
neural network, we selected four days in 1993 from the ISR 

data as our control days.  The selected dates, March 18th, June 
16th, October 19th, and December 8th, all in 1993 were close to 
the summer and winter solstice as well as the spring and fall 
equinox to represent a variety of solar conditions.  Data from 
these four days were excluded from the training data for the 
neural network model. 

 
 

IV.  RESULTS 
 

Our validation results proved that the network model 
performed adequately for all of the control days.  Fig. 1 
includes three plots that demonstrate the basic validity of the 
network output by comparing the simulation with actual 
measurements and IRI model results.  Fig. 1(a) shows the 
neural network simulation results.  Fig. 1(b) is the actual data 
measured by Arecibo ISR.  And Fig. 1(c) is the IRI model 
results.   

 

 
Figure 1(a) 

 

 
Figure 1(b) 
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Figure 1(c) 

 
Fig. 1. Electron concentration profiles above Arecibo, Puerto Rico, Oct.19th, 

1993 
(a) Generated by neural network 

(b) Arecibo incoherent scatter radar measurement 
(c) IRI model output. 

 
The color scheme in the figures is used to represent 

electron concentration values and it is in logarithm scale. The 
neural network simulated results captured most of the critical 
features of the ionosphere.  For example, the peak ionization 
height and the peak density magnitude of the simulated results 
closely match those of the actual data.  The neural network 
simulation has a well defined minimum around 500 local time 
(LT).  This phenomenon has often been observed at Arecibo 
and is generally known as post-midnight collapse.  The sharp 
reduction in the ionization is generally thought to be due to the 
reverse of neutral wind from the equator-ward direction before 
midnight to pole-ward direction afterwards.  The post-
midnight collapse in the actual data was not as pronounced as 
in the simulated data.  This could be due to the variability of 
the neutral wind in the F-region or disturbances in the electric 
field. 

The IRI model also contains the main features of the actual 
ionosphere.  The three plots in Fig. 1 differ mostly on the 
onset time of rising ionization during the day above the F-
region peak.  This can be seen by comparing the contour 
represented at an electron density of 105/cm3.  Slightly below 
500 km, the neural network simulation shows that the 
ionosphere reaches a concentration of 105/cm3 at about 900 
LT while the IRI model reaches the same level as early as 500 
LT.  The actual data shows that the 105 contour at 475 km 
occurs at a local time of about 800 LT.  The neural network 
model does not have any knowledge of real physical 
processes.  It outputs are based solely on what were used in 
the training.  The difference between neural network 
simulated results and the actual data should be within the 
natural variability of the data.  The IRI model, meanwhile, is 
also an empirical model that uses Arecibo ISR data as part of 

its input as well.  It is not clear to us why the enhancement of 
ionization typically associated with solar ionization in the IRI 
model appears to occur much earlier than in the actual data. 

Of particular interest is the comparison of total electron 
content (TEC) for the three types of data used in the above 
comparison.  Since the ISR data we used only covers the 
altitude range from 144 km to 660 km, we will only use this 
altitude range to calculate the TEC.  To distinguish this 
coverage from the true total electron content, we will use 
FTEC to represent the column abundance from 144 km to 660 
km in TEC units (i.e., 1016 electrons/m2).  Fig. 2 shows the 
FTEC comparison for the four control days, including 
Oct.19th, 1993.   

 

 
Fig. 2(a) 

 
 

 
Fig. 2(b) 

 

Solid – ISR 
Dotted – IRI 
Dashed - NN 

Solid – ISR 
Dotted – IRI 
Dashed - NN 

540



 
Figure 2(c) 

 

 
Figure 2(d) 

 
Fig. 2 (a-d). A comparison of the F-region electron column abundance for  
March 18th, June 16th, Oct. 10th, and Dec. 8th, 1993.  The solid line, dashed 
line,  and dotted lines are for ISR, neural network model, and IRI model, 

respectively. 
 

In general, the neural network simulation is closer to the 
actual data than the IRI model.  In particular, the neutral 
network model does a much better job than the IRI during the 
sun rising hours.  For all the four control days, the IRI rising 
slope in the morning hours is ahead of the actual data.  On the 
average, the rising slope of the IRI model is about 3 hours 
ahead of the actual slope.  Although the rising slope of the 
neutral network model does not always coincide with the 
actual data, the statistical average is about zero.  We thus 
conclude that neural network model is more accurate in 
forecasting the TEC.  
 
 
 

V.  DISCUSSIONS AND CONCLUSIONS 
 

Our study shows that a neural network approach can be an 
effective tool to model the ionosphere.  The advantages of 
such an approach are simplicity and flexibility.  When training 
a neural network, we only need to specify the sequence of 
input parameters and target parameters.  A neural network 
approach also allows updating the model without invoking 
previous data used, and models can be updated progressively.   

We have modeled the electron concentration of the 
ionosphere using incoherent scatter radar data.  If we are only 
interested in modeling TEC, dual frequency GPS receivers 
may potentially provide a much larger source of TEC data.  
Because satellites and receivers can be anywhere, it would be 
a formidable task to obtain a global TEC model using dual 
frequency data with a traditional modeling approach.  Neural 
network modeling is particularly appealing in assimilating this 
type of data.  In the neural network approach, we would 
simply use the satellite and receiver positions (in addition to 
date, time, solar cycle variation) as our input parameters and 
the measured TEC as our targets.  As long as there is a 
sufficient amount of training data available, a reasonable TEC 
model, suitable for obtaining the TEC in any direction, can be 
fairly easily developed.  We hope to be able to demonstrate 
this in the future. 

As pointed out in Section II, this neural network model 
was not trained to account for geomagnetic index.  It is well 
known that Kp has important ramifications on ionospheric 
modeling, and we did attempt to incorporate this parameter 
into our model.  We realized early on that disturbances of this 
nature are very difficult to simulate due to the opposing effects 
that the same Kp may produce.  Periods of high geomagnetic 
disturbance may result in abnormally high as well as 
abnormally low electron densities.  Training a neural network 
to simulate for a target that does not have a consistent 
corollary will do little for accurate simulation.  Although we 
did not train for Kp, we found that the neural network model 
did a reasonably good job of predicting under disturbed 
conditions.  Fig. 2(d) had a Kp value of 6.2, which was higher 
than ninety percent of the model data.  This day does not 
provide enough evidence to claim accurate prediction so we 
hope to include the effect of geomagnetic disturbance in future 
models. Such models will include an additional input 
parameter to differentiate uncharacteristic electron content 
caused by geomagnetic storms. 

It should be pointed out that despite all of its advantages, a 
neural network typically does not shed any light on the 
physical process involved.  When using base functions for 
modeling, it is easier to relate the output to specific input 
parameters, making physical interpretation somewhat easier.  
For this reason, a neural network approach is appropriate for 
applications where the objective is focused on the outcomes 
rather than the underlying processes.  Since GPS users are 
mainly concerned with accurate position determination, a 
neural network model will provide the appropriate tool for 
ionosphere delay correction. 
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In conclusion, we have developed a neural network model 
to forecast the electron concentration in the ionosphere.  The 
Arecibo incoherent scatter radar data from 1986 to 2000 were 
used to train our neural network, which contains 4 layers and 
45 neurons.  After experimenting with several types of neural 
networks, we found that the feed forward multilayer neural 
network performed the best.  This neural network model is 
found to predict the ionosphere above Arecibo more 
accurately than the commonly used International Reference 
Ionosphere.  Although our current neural network model is 
only applicable to a single location, we intend to expand it 
using existing data available at various data centers or TEC 
data collected by dual frequency GPS receivers.  Such a model 
should be able to improve the positioning accuracy of single 
frequency GPS systems. 
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